服务支持
Service support
常见一些玩家和工程师为音频电路噪音所扰,这里就实践中总结出的一些经验与大家分享。限于篇幅,本文仅讨论模拟类音频电路,数字、D类电路仅供参考,高频、射频电路地线排布规则与低频模拟电路不同,因此没有借鉴意义。
噪音与放大器相生相伴,是无可避免的,所谓降低噪音,目的是将其降低至可接受的范围,而不是将其根除:信噪比只能尽量提高,但不能大至无限。音频电路噪音按来源可粗略分为电磁干扰、地线干扰、机械噪声与热噪声几类,下面来对噪音来源作简要分析,并提出一些经实践证明行之有效的解决手段,希望能与同行探讨。
一、电磁干扰
电磁干扰主要来源是电源变压器和空间杂散电磁波。
音频电路尤其是早期的模拟音频电路,多数是由市电提供电源,因此必然要使用电源变压器。电源变压器工作过程是一个“电—磁—电”的转换过程,在电磁转换过程中会产生一定的磁泄露,变压器泄露的磁场被放大电路拾取并放大,最终经过扬声器发出交流声。
杂散电磁波主要来自交流电源线、强电流线、扬声器及功率分频器、无线发射设备,产生原因在这里不做深入讨论。杂散电磁波在传输、感应的形式上与电源变压器类似,杂散磁场频率范围很宽,有用家反映有源音箱夜晚时莫名其妙接收到当地电台广播就是典型的杂散电磁波干扰。
另外一个需引起重视的干扰源为整流电路。滤波电容在开机进入正常状态后,仅在交流电峰值时补充电流,充电波形是一个宽度较窄的强脉冲,电容量越大,脉冲强度也越大,从电磁干扰角度看,滤波电容并非越大越好,整流管与滤波电容之间走线应尽量缩短,同时尽量远离功放电路,PCB空间不允许则尽量用地线环绕,PCB走线适当拉开距离。
电磁干扰主要防治措施
1.降低输入阻抗
电磁波主要被导线及PCB板走线拾取,在一定条件下,导线拾取电磁波基本可视为恒功率。根据P=U^U/R推导,感应电压与电阻值的平方成反比,即放大器实现低阻抗化对降低电磁干扰很有利。
例如一个放大器输入阻抗由原20K降低至10K,感应噪声电平将降至约0.7倍的水平。目前主流音源电脑声卡、随身听、MP3带载能力强,甚至可直接推动32欧耳塞,因此可以将后级放大线路输入阻抗降低,降低输入阻抗对音质造成的影响极微弱,完全可忽略不计,试验时曾尝试将有源音箱输入阻抗降至2KΩ,未感觉音质变化,长期工作也未见异常。
2.增强高频抗干扰能力
针对杂散电磁波多数是中高频信号的特点,在放大器输入端对地增设瓷片电容,容值可在47---220P之间选取,电容与线路阻抗构成的一阶无源滤波器,频率转折点比音频范围高两至三个数量级,对音频(20HZ—20KHZ)信号的幅频特性的影响可忽略。
3.注意电源变压器安装方式
在成本允许的条件下采用质量较好的电源变压器,尽量拉开变压器与PCB之间的距离,调整变压器与PCB之间的位置,将变压器与放大器敏感端(输入端)尽量远离;EI型电源变压器各方向干扰强度不同,注意尽量避免干扰强度最强的Y轴方向对准PCB。
4.金属外壳须接地
对于HIFI独立功放来说,设计规范的产品在机箱上都有一个独立的接地点,该接地点其实是借助机箱的电磁屏蔽作用降低外来干扰;音量、音调电位器外壳,条件允许的话尽量接地,实践证明,该措施对工作于电磁环境恶劣条件下的PCB十分有效。
二、地线干扰
电子产品的地线设计是极其重要的,无论低频电路还是高频电路都必须要遵照设计规则。高频、低频电路地线设计要求不同,高频电路地线设计主要考虑分布参数和地线阻抗,多为环地;低频电路主要考虑大小信号地电位叠加(参考电位),强弱信号需独立走地线。从提高信噪比、降低噪音角度看,模拟音频电路应划归低频电子电路,严格遵循“独立走线、一点接地”原则,可显著提高信噪比。
音频电路地线可简单划分为电源地(功率地)和信号地,电源地主要是指滤波、退耦电容地线,小信号地是指输入信号地线、反馈地线。小信号地与电源地不能混合,否则必将引发很强的交流声:滤波和退耦电容充放电在电路板走线上必然存在一定压降,小信号地与该强电地重合,势必会受此波动电压影响,也就是说,小信号参考点电压不为零。信号输入端与信号地之间的电压变化等效于在放大器输入端注入信号电压,地电位变化将被放大器拾取并放大,产生交流声。
增加地线线宽、背锡处理只能在一定程度上降低地线干扰,但治标不治本,个别未严格将地线分开的PCB由于地线宽、走线很短,同时放大级数很少、退耦电容容量很小,因此交流声尚在勉强可接受范围内,只是特例,没有参考意义。举例说明:设PCB某段地线直流电阻为75毫欧,退藕电容瞬间充电电流为20mA,该放大器放大倍数是40倍,则由于退耦电容充电电流引起的参考点(地线)电位波动,被拾取、放大后,在放大器输出端有60mV的、与充电电流一致(这里要注意,地线引起的交流噪音是100HZ,而不是电磁感应的50HZ)的噪音波形,60mV的电压信号,即使在小口径、低频响应差的扬声器单元上,也足以引起可观的噪音。
正确的布线方法是,选择主滤波电容引脚作为集中接地点,强、弱信号地线严格区分开,在总接地点汇总。
下面以最常见的功放块LM1875(TDA2030A)为例,以生产商推荐线路说明一下:
大小信号地的区分
图中R1是输入电阻,R2是IC的直流偏置电阻,C2是直流反馈电容,接地点是小信号地,标记为蓝色;C3、C4、C6、C7是退耦电容,接地端标记为红色,属电源地。正确的接地方式为:三个小信号接地点可混合在一条地线上,四个电源地汇集为另一条地线,电源地与小信号地在总接地点处汇合,除在总接地点汇接外,两种地不得有其他连通点。
功放输出端的ZOBEL移相网络(R5、C5)接地点处理方法较特殊,该接地点如并入电源地,地线电压扰动将经R4反馈至LM1875反相输入端,引起交流声;而并入小信号地的话,由于信号的相位、强度不一致,将导致音乐信号量下降。因此,如印刷电路板空间允许,最好能单独走线。
下面结合几张实际的PCB板图来详细说明
1.TDA2030 PCB图
这张PCB图中,存在明显的地线设计错误,小信号地与电源地完全重合,必然存在交流噪声,且不受音量电位器控制。图中C2、C3、C4、C5是退耦电容,C7、R2、C6、信号插座JP1第一脚、JP2第三脚等五个接地点则属小信号地,大小信号地重叠后通过跳线引至C8、C9的总接地点。同时,zobel移相网络接地点(C1第二脚)也混杂在一条地线上,必然使实际情况更加复杂。实际测试时,该板的确存在明显的交流声。
2.LM4766 PCB图
该图中,C5、C11、C12是运放的退耦电容,接地端属电源地,图中用红色细线标记出电流走向;而R5、R6、R7、R9等电阻接地端属小信号地,与C5、C11、C12等退耦地共用一条地线走线的话,退耦电容工作电流与地线内阻引起的压降势必会叠加在R5、R6、R7、R9接地端,引发交流声甚至自激。
3.一张地线布线正确的PCB
这张PCB中,大小信号地严格分开,同时采用了一些其他降噪手段,信噪比例很高,输入端开路时,实测输出端残留噪音不高于0.3mV,夜深人静时耳朵贴在扬声器单元上也没有任何噪声。为看图方便,仅画出一声道的地线做示范。C9、R1、C10及信号输入插座接地端是小信号地,通过红色地线接至总接地点,左侧地线是扬声器及zobel网络地,右侧地线是退耦电容的电源地,三条地线在主滤波电容C4的2脚汇合,实现真正意义上的“一点接地”。
产品推荐
相关文章
更多动态>>- 调音台和音频处理器如何是如何不同的2024-10-10
- ip广播音响系统不同扩声模式有什么区别2024-10-9
- 渐变指向性阵列扬声器新技术2024-10-8
- 音响扩声系统不同扩声方式的对比!2024-9-23
- 我们细说调音台的输出与监听状态情况2024-6-21
- 带您研究音响高频、中频、低频具体区别在哪里...2023-10-9
- ip网络广播系统开通试验需要6个步骤!2022-7-12
- 调试公共广播系统也是需要技巧的!2022-7-4
- 好声音是调出来的!2022-6-23
- 从研发工程师和系统工程师的角度判断线阵列音...2022-6-21